Shan-Lu Liu

Shan-Lu Liu

Shan-Lu Liu

Professor, Director - Viruses and Emerging Pathogens Program, Infectious Disease Institute

liu.6244@osu.edu

614-292-8690

Areas of Expertise

  • Molecular Virology
  • Virus-host interaction
  • Innate Immunity
  • Cell Signaling

Education

  • M.D., Zhengzhou University School of Medicine, 1989
  • Ph.D., University of Washington School of Medicine, 2003
  • PostDoctoral Fellow, University of Washington and Fred Hutchinson Cancer Research Center, 2004

Research Interests

  • Host restriction to viral infection and viral countermeasures
  • Viral cell-to-cell transmission
  • Innate/adaptive immunity and sensing to viral infection
  • Mechanisms of viral membrane fusion and entry
  • Cell signaling, viral oncogenes, and human lung cancer
  • Model viruses of study – HIV, Ebola virus, SARS-CoV-2, Influenza A virus, Zika virus, hepatitis C virus, and oncogenic sheep retroviruses

Research Projects

1.IFITM restriction of viral infection

The interferon (IFN) system is the first line of host defense against pathogen invasion, including viral infections. Shortly after IFN induction or viral infection, cells express hundreds of IFN-stimulated genes (ISGs) that modulate diverse biological processes, including the establishment of antiviral states. The IFN-induced transmembrane (IFITM) protein family belongs to a group of small ISGs (~15 kD) that block the early stages of viral replication. Specifically, IFITM proteins restrict entry of a wide range of viruses, including highly pathogenic influenza A virus (IAV), SARS coronarvirus, Ebolavirus (EBOV), and HIV.
 
Recent work from our lab and others showed that IFITM proteins inhibit cell-cell fusion by IAV HA, Semliki Forest virus (SFV) E1, and vesicular stomatitis virus (VSV) G proteins, which represent class I, II and III viral fusion proteins, respectively. Interestingly, we have found that some viruses are more sensitive than others to inhibition by particular types of IFITMs, suggesting that IFITM-mediated restriction of viral entry can be virus-strain specific and IFITM-species dependent (Li et al, PLoS Pathogens 2013). Indeed, we showed that IFITM2 and IFITM3, but not IFITM2, specifically interact with HIV-1 Env, thus inhibiting its processing and viral infectivity (Yu et al, Cell Reports, 2015). Currently, we are using a variety of biophysical, biochemical, forward genetics, as well as molecular approaches to dissect the distinct mechanisms of IFITM restriction of viral entry and cell-cell spread. The model viruses applied to this project include IAV, Ebola virus (EBOV), and HIV-1.

 

IFITMs-Inhibit-Cell-HIV-Producing-Cell

2.Viral entry, fusion and cell-to-cell transmission

Entry is the first step of viral replication and essential for viral pathogenesis. While the core mechanism of virus fusion and entry is known, it remains poorly understood how exactly viral fusion proteins are activated and how the entry process is controlled for most pathogenic animal viruses. The objective of this project is to better understand the mechanisms of membrane fusion and entry by EBOV and Zika virus. We are particularly focused on cellular and viral factors in the fusion triggering and entry process, including receptor binding, low pH, and additional cellular and viral determinants.
 
EBOV is a highly pathogenic filovirus that causes severe hemorrhagic fever in humans, with a fatality rate of up to 90%. Currently, there is no effective antiviral drug or FDA-approved vaccine against this deadly virus. Entry of EBOV into host cell is mediated by its sole glycoprotein, known as GP. It is believed that EBOV enters host cells through macropinocytosis, which is initiated by the binding of EBOV GP to attachment factors or cell surface receptors, such as DC-SIGN and TIM-1. Following the uptake of viral particles into late endosome and lysosome, GP is cleaved by cellular proteases, especially cathepsin L (CatL) and B (CatB), to a 19 kDa intermediate. The 19 kDa species then binds to human Niemann-Pick C1 (NPC1), the newly identified intracellular receptor of EBOV in endolysosomes, where virus-cell membrane fusion takes place. One recent interesting finding from our lab, in collaboration with Fredric Cohen’s lab at Rush University, is that low pH per se is not a trigger but that low pH-dependent cathepsin’s activity is critical for GP-mediated fusion (Markosan and Miao et al, PLoS Pathogens, 2016). Current experiments are focused on the exact mechanisms of triggering and fusion, with an ultimate goal to develop novel fusion inhibitors against EBOV. Similar efforts have been put on Zika virus, a flavivirus family member with distinct biological properties that are associated with microcephaly and neuronal damaging.
 
Because cell-to-cell transmission has been shown to be more efficient than the cell-free virus infection, we are also currently investigating viral and cellular factors that regulate EBOV and HIV-1 cell-to-cell transmission.

3.TIM, SERINC and HIV Nef

We recently discovered that TIM-family proteins potently inhibit release of HIV and other viruses in addition to promoting viral entry (Li et al. PNAS USA, 2014).  Specifically, we showed that expression of TIM-1 protein potently blocks HIV-1 Gag release, resulting in accumulation of mature viral particles on the plasma membrane. Notably, TIM-1 mutants deficient for PS binding are incapable of blocking HIV-1 release. The inhibitory effect of TIM family proteins on viral release can be extended to some other PS receptors, including AxL and RAGE, underscoring a general role of PS in HIV and other viral infections. 

TIM,SERINC, AND HIV Nef

More recently, we showed that the Nef proteins of HIV-1 and other lentiviruses antagonize TIM-mediated restriction. HIV-1 Nef does not down-regulate the overall level of TIM-1 expression but promotes its internalization from the plasma membrane and sequesters its expression in intracellular compartments. Interestingly, coexpression of SERINC3 or SERINC5 increases the expression of TIM-1 on the plasma membrane and potentiates TIM-mediated inhibition of HIV-1 production (Li, et al, PNAS, 2019). Current project is to understand how WERINC proteins functionally interact with TIM-1, and perhaps other lipid modulating proteins, to restrict infection by lentiviruses and other viral pathogens, including through IFN and NF-kB pathway (Zeng, et al, Science Signaling, 2021).
 


 

4. Immune response to SARS-CoV-2 infection and vaccination: convergent evolution and immune imprinting

Understanding the complexities of the immune response to SARS-C0V-2, including convergent evolution and immune imprinting, is critical for developing effective public health strategies and improving vaccine design to combat the ongoing pandemic and future infectious disease threats (Evans and Liu, J Immunol, 2024). Upon infection, the human immune system responds by activating both innate and adaptive immune responses. Vaccines developed against SARS-CoV-2 aim to mimic the virus to elicit an immune response without causing disease. COVID-19 vaccination has proven effective in preventing severe disease, hospitalization, and death, and in reducing the spread of the virus. However, continued SARS-CoV-2 evolution, notably convergent mutations in the spike protein, generates variants with enhanced immune evasion, resulting in reduced vaccine efficacy (Qu et al. Cell, 2024; Qu et al, NEJM, 2022; Evans et al, Cell Host Microbe, 2022; Evans et al, NEJM, 2022; Faraone et al, Cell Reps, 2023; Li et al, mBio, 2024; Li et al, Cell Reports, 2024). In addition, immune imprinting, also known as original antigenic sin, occurs when the immune system preferentially recalls and mounts a response based on the first encounter with an antigen, impacting the effectiveness of vaccines and natural immunity. Current efforts in the lab focus on understanding the pattern of SARS-CoV-2 evolution, the mechanisms of immune imprinting, and designing strategies for novel vaccine development.


Memberships

Member, Infectious Disease Institute

Member, Center for Retrovirus Research

Member, Biomedical Sciences Graduate Program (BSGP)

Member, Molecular, Cellular, and Developmental Biology (MCDB) Program

Member, Medical Scientist Training Program (MSTP)


Relevant Publications

  1. Li, P, Faraone, C. C. Hsu, M. Chamblee, Y.-M. Zheng, J. C. Carlin, J. S. Bednash, J. C. Horowitz, R. K. Mallampalli, DL. J. Saif, E. M. Oltz, D. Jones, R.J. Gumina, K. Xu, and S.-L. Liu*. 2024. Characteristics of JN.1-derived SARS-CoV-2 Subvariants SLip, FLiRT, and KP.2 in Neutralization Escape, Infectivity and Membrane Fusion. Cell Reps. 43: 114520.
  2. Li, P, Y Liu, Faraone, C. C. Hsu, M. Chamblee, Y.-M. Zheng, J. C. Carlin, J. S. Bednash, J. C. Horowitz, R. K. Mallampalli, DL. J. Saif, E. M. Oltz, D. Jones, R.J. Gumina, and S.-L. Liu*. 2024. Distinct Patterns of SARS-CoV-2 BA.2.87.1 and JN.1 Variants in Immune Evasion, Antigenicity and Cell-Cell Fusion. 2024. mBio. 8;15(5):e0075124.
  3. Qu, P, K. Xu, J. Faraone, N. Goodarzi, Y.-M. Zheng, J. C. Carlin, J. S. Bednash, J. C. Horowitz, R. K. Mallampalli, DL. J. Saif, E. M. Oltz, D. Jones, R.J. Gumina, and S.-L. Liu*. 2024. Immune Evasion, Infectivity, and Fusogenicity of SARS-CoV-2 Omicron BA.2.86 and FLip Variants. Cell.187: 585-595.
  4. Faraone, J.N, X. Wang, P. Qu, Y.-M. Zheng, E. Vincent, H. Xu*, and S.-L. Liu*. 2024. Neutralizing Antibody Response to Bivalent mRNA Vaccine Against SARS-CoV-2 XBB Variants in SIV-Infected Rhesus Macaques. J Med Virol96(3):e29520.
  5. Evans, J. P, and S.-L. Liu*. 2023. Challenges and Prospects in Developing Future SARS-CoV-2 Vaccines: Overcoming Original Antigenic Sin and Inducing Broadly Neutralizing Antibodies. J Immunol. 211(10):1459-1467
  6. Faraone, J and S.-L. Liu*. 2023. Immune Imprinting as a Barrier to Effective COVID-19 Vaccines. Cell Rep Med. 4(11):101291.
  7. Faraone, J, P. Qu, N. Goodarzi, Y.-M. Zheng, C. Carlin, L. J. Saif, E. M. Oltz, D. Jones, R.J. Gumina, and S.-L. Liu*. 2023. Immune Evasion and Membrane Fusion of SARS-CoV-2 XBB Subvariants EG.5.1 and XBB.2.3. Emerging Microbes & Infection. 12(2):2270069.
  8. Faraone, J, P. Qu, Y.-M. Zheng, C. Carlin, D. Jones, A. Panchal, L. J. Saif, E. M. Oltz, R.J. Gumina, and S.-L. Liu*. 2023. Continued Evasion of Neutralizing Antibody Response by Omciron XBB.1.6. Cell Reports. 42(10):113193.
  9. Qu, P, J. Faraone, J. P. Evans, Y.-M. Zheng, J. C. Carlin, M. Anghelina, P. Stevens, S. Fernandez, D. Jones, A. Panchal, L. J. Saif, E. M. Oltz, B. Zhang, T. Zhou, K. Xu, R.J. Gumina, and S.-L. Liu*. 2023. Enhanced Evasion of Neutralizing Antibody Response to Omicron XBB.1.5, CH.1.1 and CA.3.1 Subvariants. Cell Reports. 42, 11244.
  10. Liu, S.-L*, L. Su, K. Luo, K. Li, G. Chen, X. Zhang, B. Zhao, R. Yuan, Y. Yang, L. Zou, C. He, J. Yang, L. He, Y. Li, D. Wang, Z. Suo, G. P. Kusakawa, and Y. Huang Y. US "China initiatives" promote racial bias. 2023. Science, May 26;380(6647):804.
  11. Qu, P, J. P. Evans, C. Kurhade, C. Zeng, Y.-M. Zheng, K. Xu, P.-Y. Shi, X. Xie, and S.-L. Liu*. 2023. Determinants and Mechanisms of the Low Fusogenicity and Endosomal Entry of Omicron Subvariants. mBio. e03176-22.
  12. Faraone, J., Qu, P, J. P. Evans, Y.-M. Zheng, J. C. Carlin, M. Anghelina, P. Stevens, S. Fernandez, D. Jones, G. Lozanski, A. Panchal, L. J. Saif, E. M. Oltz1, R.J. Gumina, and S.-L. Liu*. 2023. Enhanced Neutralization Resistance of SARS-CoV-2 Omicron XBB, BR.2 and BA.2.3.20 Subvariants. Cell Reports Medicine. 4(5):101049.
  13. Xu, J, Y.-M. Zhang, P. Qu, M. M. Shamseldi, S. Yoo, J. Misny, I. Thongpan, M. KC, J. M. Hall, J. P. Evans, M. Eltobgy, M. Lu, C. Ye, M. Chamblee, X. Liang, L. Martinez-Sobrido, A. Amer, J. Yount, P. N Boyaka, M. E. Peeples, S.-L. Liu, P. Dubey, J. Li. 2023. A next generation trivalent MMS vaccine induces durable and broad protection against SARS-CoV-2 variants of concern. PNAS. 120(41): e2220403120.
  14. Brown, G. Gunsch, K. Corps, S. Chaiwatpongsakorn, M. KC, M. Lu, R. Deora, M.E. Peeples, J. Li, K. Oestreich, S.-L. Liu, J. Yount, and P. Dubey. 2023. Prime-Pull Immunization of Mice with a BcfA-Adjuvanted Vaccine Elicits Sustained Mucosal Immunity That Prevents SARS-CoV-2 Infection and Pathology. 2023. J Immunol. 210(9):1257-1271.
  15. Qu, P, J. P. Evans, J. Faraone, Y.-M. Zheng, C. Carlin, M. Anghelina, P. Stevens, S. Fernandez, D. Jones, G. Lozanski, A. Panchal, L. J. Saif, E. M. Oltz1, K. Xu, R.J. Gumina, and S.-L. Liu*. 2022. Enhanced Neutralization Resistance of SARS-CoV-2 Omicron BQ.1, BQ.1.1, BA.4.6, BF.7 and BA.2.75.2 Subvariants. Cell Host & Microbe. 31(1):9-17.e3.
  16. Qu, P, J. P. Evans, Y.-M. Zheng, C. Carlin, L. J. Saif, E. M. Oltz, K. Xu, R. J. Gumina, and S.-L. Liu. * 2022. Evasion of Neutralizing Antibody Responses of the SARS-CoV-2 Omicron BA.2.75 Variants. Cell Host & Microbe. S1931-3128(22)00471-1.
  17. Evans, J. P, C. Zeng, P. Qu, Y.-M. Zheng, C. Carlin, J. S. Bednash, G. Lozanski, R. Mallampalli, L. J. Saif, E. M. Oltz, P. Mohler, R. J. Gumina, and S.-L. Liu. * 2022. Neutralization of SARS-CoV-2 Deltacron and BA.3 Variants. New England Journal of Medicine. 386: 2340-2342.
  18. Qu, P, J. Faraone, J. P. Evans, Y.-M. Zheng, C. Carlin, J. S. Bednash, G. Lozanski, R. Mallampalli, L. J. Saif, E. M. Oltz, P. Mohler, R. J. Gumina, and S.-L. Liu. * 2022. Neutralization of the SARS-CoV-2 Omicron BA.4/5 and BA.2.12.1 Subvariants. New England Journal of Medicine. 386: 2526-2528.
  19. Qu, P, J. Faraone, J. P. Evans, Y.-M. Zheng, L. Yu, Q. Ma, C. Carlin, G. Lozanski, L. J. Saif, E. M. Oltz, R. J. Gumina, and S.-L. Liu. * 2022. Durability of Booster mRNA Vaccine against SARS-CoV-2 BA.4/5 and BA.2.12.1 Subvariants. New England Journal of Medicine. In Press. Sept 7, 2022.
  20. Evans, J. P, C. Zeng, P. Qu, J. Faraone, Y.-M. Zheng, C. Carlin, J. S. Bednash, T. Zhou, G. Lozanski, R. Mallampalli, L. J. Saif, E. M. Oltz, P. Mohler, K. Xu, R. J. Gumina, and S.-L. Liu. * 2022. Neutralization of SARS-CoV-2 Omicron Sub-lineages BA.1, BA.1.1 and BA.2 and BA. Cell Host & Microbe. S1931-3128(22)00220-7.
  21. Cui, Z, C. Zeng, F. Huang, F. Yuan, J. Yan, Y. Zhao, J. Huang, H. F. Staats, Jeffrey I. Everitt, G. D. Sempowski, H. Wang1, Y. Dong3*, S.-L. Liu*, and Q. Wang*. 2022. Cas13d knockdown of lung protease Ctsl prevents and treats SARS-CoV-2 infection. Nature Chemical Biology. July 25, 2022. doi: 10.1038/s41589-022-01094-4.
  22. Tang, J., C. Zeng, T. M. Cox,C. Li, Y. M. Son, I. S. Cheon, Y. Wu, S. Behl, J. J. Taylor, R. Chakaraborty, A. J. Johnson, D. N Shiavo, J. P. Utz, J. S. Reisenauer, D. E. Midthun, J. J. Mullon, E. S. Edell, M. G. Alameh, L. Borish, M. H. Kaplan, D. Weissman, R. Kern, H. Hu, R.  Vassallo, S.-L. Liu*, and J. Sun*. 2022. Respiratory mucosal immunity against SARS-CoV-2 following mRNA vaccination. Science Immunology. July 19, 2022. doi: 10.1126/sciimmunol.add4853.
  23. Azar, J., J. P. Evans, M. Sikorski, K. Chakravarthy, S. McKenney, I. Carmody, C. Zeng, R. Teodorescu, N. J. Song, J. Hamon, D. Bucci, M. Velegraki, C. Bolyard, K. P. Weller, S. Reisinger, S. A. Bhat, K. J. Maddocks, R. J. Gumina, A. N. Vlasova, E. M. Oltz, L. J. Saif, D. Chung, J. A. Woyach, P. G. Shields, S.-L. Liu*, Z. Li*, M. P. Rubinstein*. 2022. Suppression of de novo antibody responses against SARS-CoV2 and the Omicron variant after mRNA vaccination and booster in patients with B cell malignancies undergoing active treatment, but maintenance of pre-existing antibody levels against endemic viruses. JCI Insight. In Revision.
  24. Abdelhamid, A. G, J. N. Faraone, J. P. Evans, S.-L. Liu, and A. E. Yousef. 2022. SARS-CoV-2 and Emerging Foodborne Pathogens: Intriguing Commonalities and Obvious Differences. Pathogens. July 27, 2022doi.org/10.3390/pathogens11080837.
  25. Evans, J. P., C. Zeng, C. Carlin, G. Lozanski, L. J. Saif, E. M. Oltz, R. J. Gumina, and S.-L. Liu*. 2022. Neutralizing Antibody Responses Elicited by SARS-CoV-2 mRNA Vaccination Wane Over Time and are Boosted by Breakthrough Infection. Sci Transl Med. 14 (637): eabn8057.
  26. Zeng C, J.P., Evans, K. Chakravarthy, P. Qu, S. Reisinger, N.-J. Song N, M.P. Rubinstein M, P.G. Shields, Z. Li Z, and S.-L. Liu*. 2022. COVID-19 mRNA booster vaccines elicit strong protection against SARS-CoV-2 Omicron variant in patients with cancer. Cancer Cell. Dec 30: S1535-6108(21)00688-7.
  27. Zeng C, J. P., Evans JP, T, King, Y.-M. Zheng, E. M., Oltz, S. P. J, Whelan, L. J. Saif, M. E., Peeples ME, and S.-L. Liu*. 2021. SARS-CoV-2 Spreads through Cell-to-Cell Transmission. Proc. Natl. Acad. Sci. USA.119(1): e2111400119.
  28. Zeng, C, J. P. Evans, J. N. Faraone, P. Qu, Y.-M. Zheng, L. J. Saif, E. M. Otlz, G. Lozanski, R. J. Gumina and S.-L. Liu*. 2021. Neutralization of SARS-CoV-2 Variants of Concern Harboring Q677H. mBio. 12(5): e0251021.
  29. Zeng, C, A. A. Waheed, T. Li, J. Yu, Y.-M. Zheng, J. Yount, H. Wen, E.O. Freed, and S.-L. Liu*. 2021. SERINC Proteins Potentiate Antiviral Type I IFN Induction and Proinflammatory Signaling Pathways. Science Signaling 14: eabc7611, Sept 14.
  30. Zeng, C, J. P. Evans, S. Reisinger, J. Woyach, C. Liscynesky, Z. E. Boghdadly, M. P. Rubinstein, K. Chakravarthy, L. Saif, E. M. Oltz, R. J. Gumina, *Peter G. Shields, Z. Li*, and S.-L. Liu*. 2021. Impaired Neutralizing Antibody Response to COVID-19 mRNA Vaccine in Cancer Patients. Cell & Bioscience.11(1):197.
  31. Gyang, TC*, J. P. Evans, J. Miller, K. Alcorn, J. Peng, E. Bell, C. Zeng, R. J. Gumina, B. Segal, and S.-L. Liu*.2021. Efficacy of SARS-CoV-2 Vaccination in Patients with Multiple Sclerosis. Multiple Sclerosis Journal—Experimental, Translational and Clinical. 8(1): 20552173221087357.
  32. Lu, M, P. Dravid, Y. Zhang, S. Trivedi, A. Li, O. Harder, K.C. Mahesh, S. Chaiwatpongsakorn, A. Zani, A. Kenney, C. Zeng, C. Cai, C. Ye, X. Liang, M. Shimamura, S.-L. Liu, P. N Boyaka, J. Qiu, L. Martinez-Sobrido, J. Yount, M. Peeples, Kapoor, S. Niewiesk, and J. Li. 2021. A safe and highly efficacious measles virus-based vaccine expressing SARS-CoV-2 stabilized prefusion spike. Proc. Natl. Acad. Sci. USA.Mar 23;118(12): e2026153118.
  33. Evans, J. P, and S.-L. Liu*. 2021. Role of host factors in SARS-CoV-2 Entry. J. Biol. Chem.297(1):100847.
  34. Kim, E, Z. Attia, R. M. Woodfint, C.Zeng, S. Kim, H. E. Steiner, R. K. Shukla, N. P. M. Liyanage, J. Li, G. J. Renukaradhya, A. A. Satoskar, A. O. Amer, S.-L. Liu, E. Cormet-Boyaka, and P. N. Boyaka. 2021. Inhibition of elastase enhances the adjuvanticity of alum and promotes anti–SARS-CoV-2 systemic and mucosal immunity. Proc. Natl. Acad. Sci. USA. 118 (34) e2102435118.
  35. Lu M, Y. Zhang, P. Dravid, A. Li, C. Zeng, K C Mahesh, S. Trivedi, H. Sharma, S. Chaiwatpongsakorn, A. Zani, A. Kenney, C. Cai, C. Ye, X. Liang, J. Qiu, L. Martinez-Sobrido, J. S. Yount, P. N. Boyaka, S.-L. Liu, M. E. Peeples, A. Kapoor, J. Li J. 2021. A methyltransferase-defective VSV-based SARS-CoV-2 vaccine candidate provides complete protection against SARS-CoV-2 infection in hamsters. J. Virol. doi: 10.1128/JVI.00592-21
  36. Zeng, C, J. P. Evans, R. Pearson, P. Qu, Y.-M. Zheng, R. T. Robinson, L. Hall-Stoodley, J. Yount, S. Pannu, R. K. Mallampalli, L. Saif, E. Oltz, G. Lozanski, and S.-L. Liu*. 2020. Neutralizing antibody against SARS-CoV-2 spike in COVID-19 patients, health care workers and convalescent plasma donors. JCI Insight.5(22): e143213.
  37. Wu, Y, W. Ho, Y. Huang, D.-Y. Jin, S. Li, S.-L. Liu, X. Liu, J, Qiu, Y. Sang, Q. Wang, K.-Y. Yuen, and Z.-M. Zheng. 2020. SARS-CoV-2 is an appropriate name for the new coronavirus. The Lancet 395 (10228): 949-950.
  38. Liu, S.-L.*, L. Saif, S. R. Weiss, and L. Su*. 2020. No Credible Evidence Supporting Claims of the Laboratory Engineering of SARS-CoV-2. Emerg. Microbes & Infect. 9(1):505-507. doi: 10.1080/22221751.2020.1733440.
  39. M. Chemudupati, A. Smith, R. Fillinger, A. Kenney, L. Zhang, A. Zani, S.-L. Liu, M. Z. Anderson, A. Sharma, and J. Yount. 2020. Butyrate Reprograms Expression of Specific Interferon- Stimulated Genes. J. Virol. 94 (16). E00326-20.
  40. Zeng, C, A. A. Waheed, T. Li, J. Yu, Y.-M. Zheng, J. Yount, H. Wen, E.O. Freed, and S.-L. Liu*. 2020. SERINC Proteins Potentiate Antiviral Type I IFN Induction and Proinflammatory Signaling Pathways. Proceedings. 2020, 50, 51; doi:10.3390.
  41. Liu, S.-L*. New Virus in China Requires International Control Effort. 2020. Nature 577(7791): 472.
  42. Liu, S.-L.*, and L. Saif. 2020. Emerging Viruses without Borders: The Wuhan Coronavirus. Viruses.12(2). pii: E130. doi: 10.3390/v12020130.
  43. Li, A. Xue, Z. Attia, J. Yu, M. Lu, C. Shan, X. Liang, T. Z. Gao, P.-Y. Shi, M. E Peeples, P. N. Boyaka, S.-L. Liu, J. Li. 2020. Vesicular Stomatitis Virus and DNA Vaccines Expressing Zika Virus Nonstructural Protein 1 Induce Substantial but Not Sterilizing Protection against Zika Virus Infection. J. Virol. 94 (17): e00048-20.
  44. Li, M.#, A. A. Waheed#,J. Yu#, C. Zeng, H.-Y. Chen,Y.-M. Zheng, A. Feizpour, B. Reinhard, S. Gummuluru,S. Lin, E. O. Freed, and S.-L. Liu*. 2019. TIM-mediated Inhibition of HIV-1 Release Is Antagonized by Nef but Potentiated by SERINC Proteins. Proc. Natl. Acad. Sci. USA. 116 (12): 5705-5714. (#Co-first author)
  45. Yu, J, C. Liang, and S.-L. Liu*. 2019. CD4-dependent Modulation of HIV-1 Entry by LY6E. J. Virol. 93 (7): pii: e01866-18.
  46. Yu, J and S.-L. Liu*. 2019. Emerging Role of LY6E in Virus-Host Interactions. Viruses. 11 (11). piiE: 1020.
  47. Zani, A, L. Zhang, T. M. McMichael, A. Kenney, M. Chemudupati, J. J. Kwiek, S.-L. Liu, and J. S. Yount. 2019. IFITMs Inhibit Cell Fusion Mediated by Trophoblast Syncytins. J. Biol. Chem. Nov 17. pii: jbc.AC119.010611.
  48. Yu, J, V. Murthy, and S.-L. Liu*. 2019. Relating GPI-anchored Ly6/uPAR and CD59 Proteins to Viral Infection. Viruses. 11 (11). pii E:1060.
  49. Evans, J and S-L. Liu.* 2019. Multifaceted Roles of TIM-family Proteins in Virus-host Interactions. Trends Microbiol. pii: S0966-842X (19)30259-8.
  50. Beitari, S, Y. Wang, S.-L. Liu and C. Liang. 2019. HIV-1 Envelope Glycoprotein at the Interface of Host Restriction and Virus Evasion. Viruses, 11(4), 311.
  51. Lu S, Z Han, M.-C. Hung, J Xu, Y,Xu, P Zheng, Z.-M. Zheng, L. Zou, Z Li, L Zheng, Y Kang, Y Yang, L He, X.-C. Liao, H Yu, Z Yue, S.-L. Liu* and H Zheng. 2019. Racial Profiling Harms Science. Science363(6433):1290-1292.
  52. Wang, T, Q. Du, Y. Niu, X. Zhang, M. He, Z. Wang, X. Wu, X. Yang, X. Zhao, S.-L. Liu, D. Tong, and Y. Huang. 2019. Cellular p32 Is a Critical Regulator of the Porcine Circovirus Type 2 Nuclear Egress. J. Virol. 93(23). pii: e00979-19.
  53. Kodigepalli, K.M, M. Li, S. Bonifati, S.-L. Liu, and L. Wu. 2018. SAMHD1 inhibits epithelial cell transformation in vitro and affects leukemia development in xenograft mice. Cell Cycle. Nov 26. doi: 10.1080/15384101.2018.1550955.
  54. Yu, J, and S.-L. Liu*. 2018. The Inhibition of HIV-1 Entry Imposed by Interferon Inducible Transmembrane Proteins Is Independent of Co-Receptor Usage. Viruses 10 (8). Pii: E413.
  55. Li, A., J. Yu, M. Lu, Y. Ma, Z. Attia, C. Shan, J. He, X. Liang, M. Xue, R. Jennings, P.-Y. Shi, M. Peeples, S.-L. Liu, P. Boyaka, J. Li. 2018. A Zika virus vaccine expressing premembrane-envelope-NS1 polyprotein. Nat. Commun. 9 (1): 3067.
  56. Yu, J., C. Liang and S.-L. Liu*. 2017. Interferon-inducible LY6E Protein Promotes HIV Infection. J. Biol. Chem. 292(11):4674-4685.
  57. Wang, Y., Q. Pan, Z. Wang, J. Yu, S.-L. Liu and C. Liang. 2017. The V3-loop of HIV-1 Env Determines Viral Susceptibility to IFITM3 Impairment of Viral Infectivity. J. Virol. 91(7). pii: e02441-16.
  58. Miller, A.D., M. de Las Heras, J. Yu, F. Zhang, S.-L. Liu, A. E. Vaughan, T. L. Vaughan, R. Rosadio, S. Rocca, G. Palmieri, J. J.Goedert, J. Fujimoto, I. I. Wistuba. 2017. Evidence against a role for Jaagsiekte sheep retrovirus in human lung cancer. Retrovirology. 14(1):3.
  59. Markosyan, R.M.#, C. Miao#, Y.-M. Zheng, G.B. Melikian, S.-L. Liu* and F.S. Cohen*. 2016. Induction of Cell-Cell Fusion by Ebola Virus Glycoprotein: Low pH Is not a Trigger. PLoS Pathogens. 12(1): e1005373. (# Co-first author)
  60. Miao, C, M. Li, Y.-M. Zheng, F. S. Cohen and S.-L. Liu*. 2015. Cell-cell Contact Promotes Ebola Virus GP-mediated Infection. Virology488:202-215.
  61. Yu, J, M. Li, J. Wilkins, S. Ding, T. H. Swartz, A. M. Esposito, Y.-M. Zheng, E. O. Freed, C. Liang, B. K. Chen, and S.-L. Liu*. 2015. IFITM Proteins Antagonize HIV-1 Envelope to Restrict Cell-to-cell Infection. Cell Reports 13: 145-156.
  62. Li, K, R. Jia, M. Li, Y.-M. Zheng, C. Miao, Y. Yao, H. Ji, Y. Geng, W. Qiao, Lorraine M. Albritton, Chen Liang, and S.-L. Liu*. 2015. A Sorting Signal Intrinsically Suppresses IFITM1 Restriction of Viral Entry. J. Biol. Chem. 290 (7): 4248-4259.
  63. Li, M, S. Ablan, C. Miao, Y.-M. Zheng, M. S. Fuller, P. D. Rennert, W. Maury, M. Johnson, E. O. Freed, and S.-L. Liu*. 2014 TIM Family Proteins Inhibit HIV-1 Release. Proc Natl Acad Sci USA. 111(35): E3699-707.
  64. Ding, S, Q. Pan, S.-L. Liu*, and C. Liang*. 2014. HIV-1 mutates to escape IFITM1 restriction. Virology454-45511-24
  65. Li K#, R. M. Markosyan#, Y.-M. Zheng#, O. Golfetto, B. Bungart, M. Li, S. Ding, Y. He, C. Liang, J. C. Lee, E. Gratton, F. S. Cohen, and S.-L. Liu*. 2013. IFITM Proteins Restrict Viral Membrane Hemifusion. PLoS Pathogens. 9 (1): e1003124. (# equal contribution)
  66. Côté M.#, Y.-M. Zheng#, and S.-L. Liu*. 2012. Membrane fusion and cell entry of XMRV is pH-independent and modulated by the envelope glycoprotein’s cytoplasmic tail. PLoS ONE. 7(3):e33734. (#equal contribution)
  67. Côté M#, Y.-M. Zheng#, Kun Li, S-H Xiang, Lorraine M. Albritton and S.-L. Liu*. 2012. Critical Role of a Leucine-Valine Change in the Distinct Low pH Requirements for Membrane Fusion between Two Related Retrovirus Envelopes. J. Bio. Chem. 287(10):7640-51. (#equal contribution)
  68. Côté M., Y.-M. Zheng and S.-L. Liu*. 2011. Single Residues in the Surface Subunits of Oncogenic Sheep Retrovirus Envelopes Distinguish Their Receptor-mediated Triggering for Fusion at Low pH and Infection. Virology 421(2): 173-183.
  69. Lu J, Q. Pan Q, L. Rong, S.-L. Liu, and Liang C. 2011. The IFITM proteins inhibit HIV-1 infection. J. Virol.85: 2126-2137.
  70. Côté M., Y.-M. Zheng and S.-L. Liu*. 2009.  Receptor Binding and Low pH Coactivate Oncogenic Retrovirus Envelope-mediated Fusion. J. Virol. 83: 1144-11455.
  71. Côté M., T. Kucharski, Y.-M. Zheng and S.-L. Liu*. 2008. Enzootic Nasal Tumor Virus Requires a Very Acidic pH for Fusion Activation and Infection. J. Virol. 82: 9023-9034.
  72. Côté M., Y.-M. Zheng, L. M. Albritton, and S.-L. Liu*. 2008. The Fusogenicity of Jaagsiekte Sheep Retrovirus Envelope Glycoprotein is Dependent on Low pH and Is Enhanced by the Cytoplasmic Tail Truncations.  J. Virol. 82: 2543-2554.
  73. Bertrand P., M. Côté, Y.-M. Zheng, L. M. Albritton, and S.-L. Liu*. 2008. Jaagsiekte Sheep Retrovirus Utilizes a pH-dependent Endocytosis Pathway for Entry. J. Virol. 82:2555-2559.
  74. Liu S.-L.* and A. D. Miller. 2007. Oncogenic Transformation by the Jaagsiekte Sheep Retrovirus Envelope Protein. Oncogene. 26:789-01.
  75. M. Cote, A. D. Miller, and S.-L. Liu*. 2007. Human RON Receptor Tyrosine Kinase Induces Complete Epithelial-To-Mesenchymal Transition but Impairs Cell Proliferation. Biochem. Biophys. Res. Commun.360:219-25.
  76. Liu S.-L. and A. D. Miller. 2005. Transformation of Madin-Darby Canine kidney (MDCK) Epithelial Cells by Sheep Retrovirus Env Proteins. J. Virol. 79: 927-933.
  77. Liu S.-L., C. L. Halbert, and A. D. Miller. 2004. The Env Glycoprotein of Jaagsiekte Sheep Retrovirus Efficiently Pseudotypes the HIV-1 Lentiviral Vectors. J. Virol. 78: 2642-2647.
  78. Liu S.–L., M. I. Lerman, and A. D. Miller. 2003. Putative PI3K Binding Motifs in Ovine Betaretrovirus Env Proteins Are Not Essential for Rodent Fibroblast Transformation and PI3K/Akt Activation. J. Virol. 77: 7924-7935.
  79. Liu S.-L., F. M. Duh, M. I. Lerman, and A. D. Miller. 2003. Role of Virus Receptor Hyal2 in Oncogenic Transformation of Rodent Fibroblasts by Sheep Betaretrovirus Env Proteins. J. Virol., 77: 2850-2858.
  80. Danilkovitch-Miagkova A, F. M. Duh, I. Ikuzmin, D. Angeloni, S.-L. Liu, A. D. Miller,and M. I. LermanMI. 2003.  Candidate Tumor Suppressor HYAL2 Is a Negative Regulator of RON Receptor Tyrosine Kinase and Mediates Transformation of Epithelial Cells by Jaagsiekte Sheep Retrovirus. Proc. Natl. Acad. Sci.  USA. 100: 4580-4585.
  81. Liu S.-L., J. M. Mittler, D. C. Nickle, T. Mulvania, D. Shriner, A.G. Rodrigo, B. Kosloff, X. He, L. Corey, and J. I. Mullins. 2002. Selection for Human Immunodeficiency Virus Type 1 Recombinants in A Patient with Rapid Progression to AIDS. J. Virol., 76: 10674-10684.
  82. Liu, S.-L., T. Schacker, L. Musey, D. Shriner, M. J. McElrath, L. Corey, and J. I. Mullins. 1997. Divergent Patterns of Progression to AIDS After Infection from the Same Source: HIV-1 Evolution and Antiviral Responses. J. Virol. 71: 4284- 4295.
  83. Liu, S.-L., A. G. Rodrigo, R. Shankarappa, G. H. Learn, L. Hsu, O. Davidov, L.-P. Zhao, and J. I. Mullins. 1996. HIV Quasispecies and Resampling. Science. 273: 415-416.